

Copyright © 2025 Dun Cat B.V., All rights reserved.

UUGear is a trade name of Dun Cat B.V.

Witty Pi 5 HAT+

Realtime Clock and Power Management for Raspberry Pi

User Manual (revision 1.00)

Copyright © 2025 Dun Cat B.V., All rights reserved.

UUGear is a trade name of Dun Cat B.V.

Table of Contents

1. Overview .. 1

1.1 Introduction .. 1

1.2 What’s New in Witty Pi 5? .. 2

1.3 Application Scenarios .. 3

1.4 Board Layout ... 6

2. Specifications ... 8

3. Package Content... 8

4. Working Principles .. 9

4.1 How Witty Pi 5 Powers Raspberry Pi .. 9

4.2 The Three Key Factors: Time, Voltage, and Temperature 10

4.3 The Schedule Scripts (.wpi, .act, and .skd Files) ... 10

4.4 Everything via I2C ... 11

5. Hardware Installation and Software Setup .. 12

5.1 Hardware Installation ... 12

5.2 Software Setup ... 15

6. The Emulated USB Flash Drive .. 17

7. The Emulated USB Serial Device ... 18

8. About Schedule Script ... 19

8.1 .wpi File ... 19

8.2 .act File ... 20

8.3 .skd File .. 20

8.4 Run a Schedule Script .. 20

8.5 Write Your Own Schedule Script .. 20

8.6 Using Schedule Script Generator ... 24

9. Additional Interfaces .. 25

9.1 Serial Wire Debug (SWD) Port for RP2350 (P4) .. 25

9.2 Unpopulated RP2350 Reset Header (P7) ... 25

9.3 Unpopulated 3V RTC Battery Connector (P6) .. 25

9.4 Unpopulated Serial Port Connector (P5) ... 25

9.5 Unpopulated 7-Pin Extension Header (P2) .. 25

9.6 Solder Pads for Internal I²C Bus (I-SDA and I-SCL) .. 26

10. Migrating from Witty Pi 4 to Witty Pi 5 .. 27

11. Log Files for Witty Pi 5 ... 28

11.1 Software Log (on Raspberry Pi) .. 28

11.2 Firmware Log (on Witty Pi 5) ... 28

Copyright © 2025 Dun Cat B.V., All rights reserved.

UUGear is a trade name of Dun Cat B.V.

12. Frequently Asked Questions (FAQ) .. 29

12.1 What I2C address is used by Witty Pi 5? Can I change it? 29

12.2 What I2C Registers are provided by Witty Pi 5? ... 30

12.3 What GPIO Pins Are Used by Witty Pi5? ... 37

13. Revision History .. 38

 1

1. Overview

 Introduction

Witty Pi is an add-on board for Raspberry Pi that brings real-time clock (RTC) and power

management functionalities to your Raspberry Pi. It can define the on/off sequence of your

Raspberry Pi, perform power on/off actions based on temperature or voltage thresholds, and

significantly reduce overall energy consumption.

Witty Pi 5 HAT+ is the fifth generation in the Witty Pi product line, and it is also the first Witty Pi

board that complies with the Raspberry Pi HAT+ specification. For simplicity, we will refer to it as

Witty Pi 5 later.

Powered by the RP2350 microcontroller, Witty Pi 5 can emulate both a USB flash drive and a USB

serial device through its USB Type-C port. This allows the user to manage configuration files and

scripts on Witty Pi directly from a computer, and also monitor real-time logs via the serial interface.

Communication between Witty Pi 5 and the Raspberry Pi is handled exclusively via the I²C

interface, meaning that no additional GPIO pins on the Raspberry Pi are used.

https://datasheets.raspberrypi.com/hat/hat-plus-specification.pdf

 2

Witty Pi 5 includes the following hardware features:

• A high-precision real-time clock, with an accuracy of ±3.8 to 5 ppm.

• A dedicated temperature sensor with 0.0625°C resolution.

• An onboard DC/DC converter that accepts up to 30V DC input.

• Two “ideal” diodes that isolate VIN and VUSB channels.

• An RP2350 microcontroller (MCU) with an external 16MB flash memory.

• An ID EEPROM compatible with HAT+ specification.

 What’s New in Witty Pi 5?

Compared to Witty Pi 4, Witty Pi 5 introduces many significant new features and improvements.

Witty Pi 5 is implemented according to the Raspberry Pi HAT+ standard, and is categorized as a

Mode 1 Power HAT+. It can supply up to 5A current output, making it suitable for high-power

applications.

One major architectural change is that the schedule script is now stored and processed entirely on the

Witty Pi board, rather than on the Raspberry Pi as in previous generations. This allows Witty Pi 5 to

independently handle scheduling logic, ensuring reliable operation even if the Raspberry Pi crashes

or experiences issues during power on/off transitions.

Witty Pi 5 supports a new type of schedule script: the .act script, in addition to the traditional .wpi

script used in earlier versions. These two script types are designed for different use cases:

• The .wpi script defines a looped schedule, where the user specifies a few states within a

repeating cycle. This allows for concise definitions of long-term schedules. However, some

users found it less flexible—especially when trying to schedule the Raspberry Pi to power on

at a specific time, which could require complex calculations.

• The .act script, on the other hand, is linear and event-based, essentially a timestamped list of

actions. It allows the user to easily specify exact times for power-on/off events, making it

much more intuitive for one-time or irregular schedules. However, .act scripts are typically

longer and less compact when defining repetitive behaviors.

By supporting both .wpi and .act scripts, Witty Pi 5 provides more versatility and flexibility,

allowing users to choose the scripting model that best fits their application. Both script types can be

converted into .skd files, which are the actual schedule files executed by the firmware.

 3

Witty Pi 5 is also more developer-friendly for firmware and software customization. Both its

firmware (written in C using the pico-sdk) and its software (written in C) are fully open-source,

allowing users to modify and adapt them as needed.

Just like other RP2350-based boards, firmware updates are very easy: by holding the BOOTSEL

button while connecting the USB cable, the RP2350 enters USB boot mode and presents itself as a

virtual USB drive. You can then drag-and-drop the compiled .uf2 firmware file to flash it.

Witty Pi 5 also emulates both a USB flash drive and a USB serial device. This allows users to edit

configuration files, view logs stored on the board, and monitor real-time logs via the serial

interface—all of which lower the barrier for development and debugging.

 Application Scenarios

1.3.1 Time Controlled Device

The high-precision RTC (real-time clock) on Witty Pi 5 has built-in temperature compensation and

provides accurate timekeeping even without a network connection.

With Witty Pi 5, you can define the power-on and power-off times for your Raspberry Pi, or even

create a complex schedule using scripting to fit your specific needs.

By powering down the Raspberry Pi when it's not needed and powering it up only at the right time,

you can significantly reduce overall power consumption. This feature is especially valuable for

battery-powered devices.

 4

1.3.2 Temperature Controlled Device

The temperature sensor on Witty Pi 5 offers a resolution of 0.0625°C and supports both high and low

temperature threshold interrupts.

You can configure Witty Pi 5 to power on or off the Raspberry Pi based on temperature thresholds,

effectively turning your Raspberry Pi into a temperature-controlled device.

1.3.3 Voltage Controlled Device

When powered via the VIN terminal block, Witty Pi 5 can monitor the input voltage and make

power-on/off decisions accordingly.

This feature is commonly used in battery-powered applications, where the Raspberry Pi can be shut

down when the battery voltage drops too low and powered up again once the voltage recovers to a

safe level.

 5

1.3.4 Uninterruptible Power Supply (UPS)

Witty Pi 5 has two independent power input channels: VUSB and VIN. These channels can operate

simultaneously and back each other up.

If one power source fails, the other can continue to power the system.

Witty Pi 5 also provides software-level access to the current power source status, allowing your

software to decide whether to continue running or shut down the Raspberry Pi safely.

 6

 Board Layout

Witty Pi 5 supports all Raspberry Pi models with a 40-pin GPIO header, including A+, B+, 2B, Zero,

Zero W, Zero 2 W, 3B, 3B+, 3A+, 4B, and 5B.

For models like Zero, Zero W, and Zero 2 W, you will need to solder a 40-pin header onto the board

beforehand to ensure a reliable connection with Witty Pi.

The PCB shape of Witty Pi 5 is the same as that of Witty Pi 4, and the positions of the switch and the

USB Type-C connector are also identical.

However, some other connectors are placed differently on Witty Pi 5, which makes it physically

incompatible for a direct replacement of Witty Pi 4.

The diagram below shows all available interfaces on the Witty Pi 5 board.

1. USB type C connector for 5V power input (VUSB)

2. Solder pads for VUSB.

3. KF350 screw terminal block connector for higher voltage input (VIN)

4. White LED as status indicator

5. ON/OFF button

6. Solder pads for VOUT

7. 2x20 pin stacking header for connecting to Raspberry Pi

8. Serial Wire Debug (SWD) port for RP2350 (P4)

9. 3V (CR2032) battery holder

10. Unpopulated RP2350 reset header (P7: RUN and GND)

11. Unpopulated 3V RTC time keeping battery connector (P6: Vb-3V and GND)

 7

12. Unpopulated serial port connector (P5: RXD, GND and TXD)

13. Unpopulated 7-pin extension header (P2)

14. Solder pads for internal I2C bus (I-SDA and I-SCL)

15. BOOTSEL button (K2)

 8

2. Specifications

Dimension 65mm x 56mm x 19mm

Weight 28g (net weight without accessories)

Microcontroller RP2350 (datasheet)

Realtime Clock RX8025T-UB (datasheet)

Temperature Sensor TMP112 (datasheet)

DC/DC Converter TPS54540 (datasheet)

MOSFET Switch AO4805 (datasheet)

Battery CR2032 (for time keeping only, when no power supply is connected)

Power In

DC 5V (via USB type-C connector)

Or

DC 6V~30V (via KF350-2P screw terminal block connector)

Output Current Up to 5A for Raspberry Pi and its peripherals

Standby Current ~8mA (could be reduced to ~0.8mA, when this issue is resolved)

Operating

Environment

Temperature -30°C~80°C (-22°F~176°F)

Humidity 0~80%RH, no condensing, no corrosive gas

3. Package Content

Each package of Witty Pi 5 contains:

⚫ Witty Pi 5 board x 1

⚫ M2.5x11 copper standoff x 4

⚫ M2.5 screws x 8

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://www.uugear.com/doc/datasheet/RX8025T.pdf
https://www.uugear.com/doc/datasheet/TMP112.pdf
https://www.uugear.com/doc/datasheet/TPS54540.pdf
https://www.uugear.com/doc/datasheet/AO4805.pdf
https://github.com/raspberrypi/pico-sdk/issues/2376#issuecomment-2763288685

 9

4. Working Principles

 How Witty Pi 5 Powers Raspberry Pi

Witty Pi 5 provides two independent power input channels: one via the USB Type-C connector and

the other via the KF350 screw terminal. These two channels are connected in parallel through two

“ideal” diodes, which means they can serve as backups for each other. When one power source is cut

off, Witty Pi 5's firmware detects the change and—depending on the configured strategy—either

switches to the other power source to keep the system running or performs a safe shutdown of the

Raspberry Pi.

The diagram on the right illustrates the “ideal” diode circuit

implemented by Witty Pi 5. When VIN is higher than VOUT, the

rail-to-rail op-amp outputs a low voltage (VCTRL ≈ 0V), turning on

the P-MOSFET. When VIN is lower than VOUT, the op-amp

outputs a high voltage (VCTRL ≈ 5V), turning off the P-MOSFET.

Since the P-MOSFET (AO4805) has an extremely low RDS(ON) of

about 20 milliohms, its voltage drop when turned on is negligible,

making it behave almost like an ideal diode. This dual ideal diode

configuration also prevents backfeeding between the two power

sources.

The actual power path that Raspberry Pi actually uses is determined by the voltage level—whichever

channel provides a higher voltage will dominate. When both channels are powered, the KF350

terminal typically wins because its DC/DC converter is designed to output 5.25V, which is usually

higher than the voltage coming from the USB Type-C. However, by fine-tuning the input voltage,

users can control which channel has higher priority.

A dedicated P-MOSFET is used to control whether the Raspberry Pi receives power, and this

MOSFET is managed by firmware running on the RP2350. Witty Pi 5 decides when to power on or

shut down the Raspberry Pi based on time, voltage, temperature, and user-defined rules.

 10

 The Three Key Factors: Time, Voltage, and Temperature

Time, voltage, and temperature jointly determine the ON/OFF state of the Raspberry Pi.

For shutdown, these three factors work in an OR logic: if any one of them triggers a shutdown

condition, the Raspberry Pi will be shut down. This logic is intuitive—whether it’s a scheduled

shutdown, under-voltage, or over-temperature condition, each represents an urgent reason to shut the

system down.

For startup, the logic is AND: all three conditions must be satisfied before the Raspberry Pi is

powered on. This more conservative approach prevents the system from starting under unsafe or

unstable conditions—for example, we don't want the Pi to boot on schedule only to be shut down

again immediately due to low voltage.

 The Schedule Scripts (.wpi, .act, and .skd Files)

The .wpi script format has been used in earlier versions of Witty Pi. It defines a start time, an end

time, and a recurring ON/OFF sequence between them. The advantage of .wpi is its simplicity—it

allows defining long-term schedules with just a few lines of code. However, some users found it too

inflexible, especially when trying to set up a wake-up time precisely—they often had to perform

manual calculations.

To address this, Witty Pi 5 introduces support for a new format: .act script. This format lists actions

(power-on or power-off) with precise timestamps in a linear, human-readable format. This makes it

easier to create and modify complex schedules, although long schedules can result in lengthy .act

files.

Internally, Witty Pi 5 executes a .skd script, which is a compressed version of the .act script.

The .skd format trades readability for storage efficiency. When the firmware cannot find a .skd file, it

tries to load the .act script and convert it into .skd. If that also fails, it will fall back to the .wpi script,

convert it into .act, and then into .skd.

Unlike previous Witty Pi versions, Witty Pi 5 stores and processes the schedule scripts in its onboard

flash memory. This makes scheduling fully independent of the Raspberry Pi. Even if the Raspberry

Pi crashes during startup or shutdown, the schedule logic will continue to function properly.

 11

 Everything via I2C

Witty Pi 5 no longer uses any GPIO pins other than SDA and SCL, avoiding conflicts with other

hardware and complying with the Raspberry Pi HAT+ specification.

All software interactions with Witty Pi 5 are performed over the I2C interface, including status

polling, reading variables, issuing commands, and saving configuration.

Even the watchdog functionality is implemented via I2C. The software periodically polls a register

over I2C, which will trigger the firmware to update the heartbeat value. If the firmware detects the

heartbeat value hasn’t been updated in time, it records a Heartbeat Missed event. After a predefined

number of consecutive missed heartbeats, the firmware performs a forced power cycle to recover the

system.

As required by the Raspberry Pi HAT+ specification, the ID EEPROM on Witty Pi 5 is connected

to a separate I2C bus (using ID_SD and ID_SC pins), which is dedicated to board identification.

 12

5. Hardware Installation and Software Setup

 Hardware Installation

You can simply mount Witty Pi 5 onto the 2x20 pin GPIO header of your Raspberry Pi, and it will

already start working. However, for a more secure and durable connection—especially in long-term

deployments—you may wish to use the standoffs and screws included in the package.

First, fix the four standoffs onto your Raspberry Pi using the provided screws, as shown in the figure

below:

Then your Raspberry Pi should look like this:

 13

Next, mount Witty Pi 5's stacking header onto the 2x20 pin GPIO header of the Raspberry Pi and

fasten it with the screws.

Optional: You may put a CR2032 battery into the battery holder. This battery allows Witty Pi 5 to

remember the time even when no external power is connected. The RTC draws about 5µA from the

battery, which means a typical battery can last for years. If your Witty Pi 5 is always connected to

external power source, the battery is not required, and all functions will still work normally without

it.

To allow Witty Pi 5 to fully control the power supply to your Raspberry Pi, make sure you only

connect power to Witty Pi 5 (either via the USB Type-C port or the KF350 terminal block). If you

supply power directly to the Raspberry Pi, Witty Pi 5 will be bypassed and will not be able to control

the power state.

 14

Once powered, Witty Pi 5 will blink its white LED every 10 seconds to indicate that it is ready. This

is the default behavior and can be customized in the settings.

Now the hardware installation is complete.

 15

 Software Setup

Remarks: Witty Pi 5’s software is developed and tested under Raspberry Pi OS.

Please make sure to enable I2C interface in your Raspberry Pi, because Witty Pi 5’s software needs

to talk to Witty Pi 5 hardware via I2C.

5.2.1 Installation with Internet Connection

If your Raspberry Pi has Internet connection, you may run the following command to download the

latest .deb package:

Then install it with:

If a newer version of the software becomes available, you can repeat the above steps to update it.

5.2.2 Installation without Internet Connection

If your Raspberry Pi does not have Internet connection. You may still download the latest .deb

package on another machine, and then copy the file to your Raspberry Pi to install it.

Alternatively, you may find a software .deb package located in the emulated USB flash drive, which

can be used for installation. The emulated USB flash drive will be mounted to /media/pi/Witty Pi 5

directory, when you connect Witty Pi 5 to Raspberry Pi’s USB port with USB cable.

However, that software package is not likely to be the latest version. If you install that package, it is

recommended to update the software when your Raspberry Pi has Internet connection.

5.2.3 Uninstall the Software

To uninstall the software in the future, run:

pi@raspberrypi:~ $ wget https://www.uugear.com/repo/WittyPi5/wp5_latest.deb

pi@raspberrypi:~ $ sudo apt install ./wp5_latest.deb

pi@raspberrypi:~ $ sudo apt remove wp5

https://www.raspberrypi-spy.co.uk/2014/11/enabling-the-i2c-interface-on-the-raspberry-pi/

 16

5.2.4 Run the software

To launch the software, simply type “wp5” in any directory and press ENTER.

The program will display the current device status along with a list of available options.

You can make a selection by typing the corresponding number and pressing ENTER.

 17

6. The Emulated USB Flash Drive

When you connect your Witty Pi 5 to a computer using a USB cable, your system will detect a USB

flash drive named “Witty Pi 5”. This virtual drive has a 14MB capacity and uses the FAT12 file

system.

The drive contains the following three directories:

• conf – stores Witty Pi 5's configuration files.

• log – contains Witty Pi 5's log files.

• schedule – holds the available schedule script files.

Important Notes

Witty Pi 5's firmware may also access the FAT12 disk (e.g., to write logs or save configuration files).

To avoid conflicts, the firmware will automatically eject the USB drive before performing write

operations. This is why you may sometimes notice the drive is unexpectedly ejected from your

computer.

Safe Removal Procedure

After you finish working with the files on the USB drive, it is strongly recommended to eject the

drive from your operating system before physically disconnecting the cable.

If you notice the white LED on Witty Pi 5 flashing rapidly after ejecting the drive, please wait a few

moments. The LED will turn off completely once all internal operations are done. Only after the

LED is off, you can safely disconnect the USB cable.

 18

7. The Emulated USB Serial Device

When you connect Witty Pi 5 to your computer via a USB cable, in addition to the USB flash drive,

your system will also detect a USB serial device.

You can use your preferred serial terminal application (e.g., PuTTY, minicom, screen, CoolTerm

etc.) to connect to this serial port and monitor the real-time logs from Witty Pi 5.

This is especially useful for debugging purposes.

Power Supply Consideration

Please note that most PC USB ports cannot supply enough current to allow Raspberry Pi to fully

boot up.

If you plan to use the USB serial interface:

• It is recommended to power Witty Pi 5 via the KF350 terminal block,

or

• You may power the Raspberry Pi directly (e.g., via its USB-C port), but Witty Pi 5 will not

be able to control the power to the Raspberry Pi in that case.

 19

8. About Schedule Script

In addition to manually setting the next startup or shutdown time, you can define a more complex

power schedule for your Raspberry Pi using Schedule Scripts.

These scripts are plain text files stored in the onboard flash memory of Witty Pi 5, and they are

executed by the firmware directly.

Witty Pi 5 supports three types of schedule script formats: .wpi, .act, and .skd.

 .wpi File

This is the schedule format used by earlier versions of Witty Pi.

Witty Pi 5 still supports this format, but unlike previous models, the script is now interpreted by the

firmware instead of the software running on the Raspberry Pi.

A .wpi file defines a looped schedule with a begin time, end time, and repeating ON/OFF states

within that range. This effectively divides the time axis into alternating ON and OFF states.

With .wpi file you may define a long schedule with just a few lines. However, such simplicity

sometimes sacrifices a bit flexibility. For example, if you request the next shutdown time (as the end

of ON state) at a moment when the Pi is in an OFF state, you will get the end time of the next ON

state.

 20

This behavior, known as “shifting ON state”, can be confusing to some users—it may require extra

effort to schedule a shutdown at your exact desired moment.

 .act File

This is a new format supported by Witty Pi 5.

Compared to .wpi, the .act file has a simpler structure: it is a linear list, where each line specifies a

startup or shutdown time.

Its advantage is flexibility: you can schedule each operation at any specific time without needing to

calculate durations or loop timings.

The downside is that for a long schedule, you may need to write many lines to cover all actions.

 .skd File

The .skd file can be seen as a compressed version of the .act file.

It trades off human readability for compactness, reducing the overall size of the script.

In fact, .skd is the format that Witty Pi 5 actually executes. Both .wpi and .act scripts will be

automatically converted into .skd format by the firmware before execution.

When a .wpi file is converted to .skd, unnecessary loop iterations are skipped, and only future

ON/OFF transitions are translated into actual operations with timestamps.

 Run a Schedule Script

Once a schedule script is selected to run, the firmware will parse it and determine the next startup

and shutdown times (if any) from the current time.

These times will be saved into the configuration, and based on the current state of the Raspberry Pi

(ON or OFF), the firmware will configure the RTC with the corresponding alarm.

When the RTC alarm is triggered, the firmware will perform the scheduled operation to power ON or

OFF the Raspberry Pi.

 Write Your Own Schedule Script

A schedule script is actually a plain text file, and you can use any text editor to create and edit it.

You can then place your own .wpi file into the “schedule” directory in the USB drive emulated by

Witty Pi 5, so it can be listed and chose via the software (wp5).

8.5.1 .wpi Format

Below is a very simple .wpi schedule script and it will keep your Raspberry Pi on for 5 minutes in

every 20 minutes.

 21

Like many other scripting languages, .wpi schedule script also uses “#” to make single line comment.

The first two lines define the time range for executing the script. Please make sure to use the correct

time format (YYYY-mm-DD HH:MM:SS). You can use one or more white characters (space or tab)

between BEGIN/END and the time string.

The rest of the script defines the states in the loop. It could be “ON” or “OFF”, and you should

define at least one “ON” and one “OFF” states in the loop. The ON and OFF states are used in pair.

You should also specify the duration of each state. You can do so by putting one or more parameters

after ON/OFF text, separated by space or tab. Each parameter starts with a capital letter and follows

by a number, where the capital letter is the unit of time:

⚫ D = Days (D2 means 2 days)

⚫ H = Hours (H3 means 3 hours)

⚫ M = Minutes (M15 means 15 minutes)

⚫ S = Seconds (S30 means 30 seconds)

For example, if you wish to define an ON state for one and a half hours, you can write:

ON H1 M30

When the script engine executes this line, it will schedule a shutdown at the end of the ON state.

If you wish to define an OFF state for two days, you can write:

OFF D2

When this line gets executed, a startup will be scheduled at the end of the OFF state.

Sometimes you may want to skip certain scheduling of shutdown/startup, and let your own program

to do the job. This can be achieved by using the WAIT syntax. For example:

ON M15 WAIT

This will keep your Raspberry Pi ON and no shutdown will be scheduled after 15 minutes, because

there is a WAIT at the end of the line. The parameter M15 is here only to make sure the next OFF

state can be calculated correctly and next shutdown can be scheduled properly.

Turn on Raspberry Pi for 5 minutes, in every 20 minutes

BEGIN 2025-06-01 00:00:00

END 2025-07-31 23:59:59

ON M5 # keep ON state for 5 minutes

OFF M15 # keep OFF state for 15 minutes

 22

Once you use WAIT in the ON state, you (or your program) are responsible for the shutdown of your

Raspberry Pi. If you use WAIT in the OFF state, you will need to turn on your Raspberry Pi

(manually or via external electronic switch).

After installing the software, there are some schedule scripts in the “schedules” directory, and they

all have comments inside to explain themselves. You can take them as example to learn how to

create the Witty Pi schedule script.

8.5.2 .act Format

Below is an example of .act file. It is a linear list, and each line is an action (UP or DN) with its

associated time.

You can also use # to start a comment in .act file. This format is so simple, that the only thing to take

care is the correct time format (YYYY-mm-DD HH:MM:SS).

Example of .act schedule script

UP 2025-06-01 00:00:00

DN 2025-06-01 00:05:00

UP 2025-06-01 00:20:00

DN 2025-06-01 00:25:00

UP 2025-06-01 00:40:00

DN 2025-06-01 00:45:00

 23

8.5.3 .skd Format

Although .skd file is the actual script format that used by Witty Pi 5, usually you don’t need to write

it by yourself, because the firmware will automatically convert .wpi or .act file to .skd file.

However, knowing the format of .skd file may still be useful. For example, you may want to develop

a software to directly generate .skd file and let Witty Pi 5 to run it.

Below is an example. The .skd file is also a linear list, and each line is an action with its associated

time. Different than .act file, the action type uses only one letter: “U” for “UP” and “D” for “Down”,

also the time is converted to a timestamp value (total seconds since the beginning of year 2000).

Example of .skd schedule script

U707356800

D707357100

U707358000

D707358300

U707359200

D707359500

 24

 Using Schedule Script Generator

You may also use our web application to create your schedule script. At this moment only .wpi

format is supported.

Just simply open this URL in your web browser:

https://www.uugear.com/app/wittypi-scriptgen/

This web application allows you to visually create the schedule script, and it immediately generate

the final code on the right.

You can also click the “Run Now” button to preview how the schedule script will work.

Alternatively, you can click the “Run at…” button and specify the moment to run the script.

https://www.uugear.com/app/wittypi-scriptgen/
https://www.uugear.com/app/wittypi-scriptgen/

 25

9. Additional Interfaces

Witty Pi 5 provides a number of unpopulated interfaces in the form of solder pads. These are usually

labelled on the back side of the board.

 Serial Wire Debug (SWD) Port for RP2350 (P4)

This 3-pin header is the Serial Wire Debug (SWD) interface for RP2350. You can

solder a connector here to connect a Raspberry Pi Debug Probe for firmware debugging

purposes.

 Unpopulated RP2350 Reset Header (P7)

This 2-pin header (RUN and GND) allows you to connect an external reset button to the

RP2350 microcontroller.

 Unpopulated 3V RTC Battery Connector (P6)

This 2-pin header (Vb-3V and GND) lets you connect a 3V battery or other power source

for the RTC, enabling timekeeping when no external power is present.

 Unpopulated Serial Port Connector (P5)

This 3-pin header (RXD, GND, TXD) allows you to connect a USB-to-Serial adapter, or

link it to a Raspberry Pi Debug Probe for serial communication with RP2350.

 Unpopulated 7-Pin Extension Header (P2)

This header exposes several internal signals:

3.3V – Power supply used by RP2350, RTC, and temperature sensor (not connected

to Raspberry Pi's 3.3V rail).

LED – Connected to RP2350 GPIO2 through a 2.2kΩ resistor. Intended for driving

an external LED (not yet used in firmware).

RTC.A – RTC alarm output pin, connected to RP2350 GPIO8. Default is HIGH

(3.3V), goes LOW when an alarm occurs.

TMP.A – Temperature sensor alert output, connected to RP2350 GPIO9. Default is HIGH, goes

LOW on alert.

https://www.raspberrypi.com/documentation/microcontrollers/debug-probe.html

 26

SWITCH – Signal from the onboard button, connected to RP2350 GPIO3. Pulled HIGH, goes LOW

when pressed.

If you want to connect your own switch, you may

wire the two leads to SWITCH and GND pins.

Alternatively, if you wish to trigger Witty Pi 5 with

external signal, you can use an N-MOSFET to

achieve this. The signal should be a positive pulse.

Processing a pulse will be equal to taping the switch once. This will

turn on your Raspberry Pi when it is off, or turn off your Raspberry Pi when it is on.

1.1V – The 1.1V power rail used by RP2350.

GND – Ground (connected to other GND points).

 Solder Pads for Internal I²C Bus (I-SDA and I-SCL)

This 2-pin header exposes the internal I²C bus used by RP2350. It is not the same as the

I²C bus on the Raspberry Pi. Devices connected to this bus cannot be directly accessed by

the Raspberry Pi; instead, they must be accessed through register mapping implemented in

Witty Pi 5 firmware.

 27

10. Migrating from Witty Pi 4 to Witty Pi 5

Although Witty Pi 5 shares the same PCB size with Witty Pi 4, and has matching locations for the

2x20 pin stacking header, push button, and USB Type-C connector, other interfaces differ. If your

project makes use of additional interfaces on Witty Pi 4, you may not be able to directly switch to

Witty Pi 5.

The software used for Witty Pi 4 is not compatible with Witty Pi 5. If you are upgrading to Witty Pi

5, you need to install the dedicated software package for Witty Pi 5, named wp5.

The .wpi schedule scripts used on Witty Pi 4 are still compatible with Witty Pi 5. To use them, copy

them into the schedule directory inside the emulated USB drive of Witty Pi 5. Just like with Witty Pi

4, Witty Pi 5 will look for a file named schedule.wpi and execute it (after converting it to a .skd file).

You may also use the software interface to select and execute a different script.

If your project communicates with Witty Pi via I²C, please be aware the I²C address has changed:

• Witty Pi 4 used address 0x08

• Witty Pi 5 uses address 0x51

In addition, the set of I²C registers provided by Witty Pi 5 is different from that of Witty Pi 4. Please

refer to the “What I²C Registers are Provided by Witty Pi 5” section for details.

Unlike Witty Pi 4, Witty Pi 5 no longer uses any GPIO pins other than the I²C interface.

On Witty Pi 4, the push button was connected to Raspberry Pi's GPIO-4, but that is no longer the

case with Witty Pi 5. If you wish to connect an external push button to Witty Pi 5, you must connect

it between the SWITCH and GND pads on the Witty Pi 5 board, not between Raspberry Pi's GPIO-

4 and GND.

 28

11. Log Files for Witty Pi 5

In previous versions of Witty Pi, if the Raspberry Pi failed to start for any reason, no log would be

available—because logging relied entirely on software running on the Pi itself.

Witty Pi 5 introduces a much more comprehensive logging system, with logs generated both by its

software and its firmware. This is a major improvement for debugging and monitoring.

 Software Log (on Raspberry Pi)

Witty Pi 5’s software daemon wp5d automatically starts after the Raspberry Pi boots. It maintains its

own log file at:

/var/log/wp5d.log

This file records events such as system startup, shutdown requests, and power management decisions

made by the daemon etc.

 Firmware Log (on Witty Pi 5)

Witty Pi 5’s firmware also maintains a dedicated log file:

WittyPi5.log

This file is stored inside the log directory on the emulated USB flash drive. It contains the most

complete and low-level debug information, which is identical to the messages you would observe via

the USB serial interface.

With this dual-layer logging system, Witty Pi 5 can provide diagnostic insights even when the

Raspberry Pi fails to start, making it much easier to trace hardware or timing issues.

 29

12. Frequently Asked Questions (FAQ)

 What I2C address is used by Witty Pi 5? Can I change it?

Witty Pi 5 communicates with realtime clock and temperature sensor in its internal I2C bus, and only

exposes one I2C slave device to Raspberry Pi, which has an I2C address: 0x51. This address is

configurable and you can change it if you want.

If you have Witty Pi 5 connected to Raspberry Pi and run “i2cdetect –y 1” command in the console,

you will see this:

If you want to change the I2C address used by Witty Pi 5, you can change the value of I2C register at

position #16. For example, if you want to change the I2C address to 0x35, you can run:

After that you also need to modify and recompile the software (wp5), so it will use the new address.

In the file “wp5lib.h”, modify the value of I2C_SLAVE_ADDR from 0x51 to the value you want.

The final step is to shut down your Raspberry Pi, fully disconnect the power supply of your Witty Pi

5, and then reconnect the power supply. Then the MCU will start working with new address.

pi@raspberrypi:~ $ i2cdetect -y 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- 51 -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

pi@raspberrypi:~ $ i2cset -y 1 0x51 16 0x35

 30

 What I2C Registers are provided by Witty Pi 5?

The micro controller (RP2350) on Witty Pi 5 works as an I2C slave and Raspberry Pi can read/write

its registers via I2C interface. Witty Pi 5’s software configures Witty Pi 5 by setting the I2C registers

accordingly.

The micro controller also implements an I2C master to access the realtime clock and temperature

sensor via an internal I2C bus. The I2C registers in realtime clock and temperature sensor are all

mapped as virtual I2C registers in Witty Pi 5’s I2C slave device, so Raspberry Pi can also access

them.

The realtime clock’s registers are mapped to virtual registers #80~#95.

The temperature sensor‘s registers are mapped to virtual registers #96~#103.

In Raspberry Pi’s view, Witty Pi 5 provides 4 kinds of I2C registers:

• Read-only I2C registers

• Normal I2C registers (configuration and administration registers)

• Virtual I2C registers

The table below shows the registers provided by Witty Pi 5. As you can see, some of them are read-

only (cannot be changed, or can only be updated by the firmware itself):

 31

Index Description Range Defa

ult

Accessible

0 Firmware ID -- 0x51 Read-only

1 Firmware major version 1~99 1 Read-only

2 Firmware minor version (x100) 0~99 0 Read-only

3 The MSB of VUSB (in mV) 0~255 0 Read-only

4 The LSB of VUSB (in mV) 0~255 0 Read-only

5 The MSB of VIN (in mV) 0~255 0 Read-only

6 The LSB of VIN (in mV) 0~255 0 Read-only

7 The MSB of VOUT (in mV) 0~255 0 Read-only

8 The LSB of VOUT (in mV) 0~255 0 Read-only

9 The MSB of IOUT (in mV) 0~255 0 Read-only

10 The LSB of IOUT (in mV) 0~255 0 Read-only

11 Power mode: 0=via VUSB, 1=via VIN 0 or 1 0 Read-only

12 Number of missed heartbeats 0~255 0 Read-only

13 Raspberry Pi state: 0=OFF, 1=STARTING, 2=ON, 3=STOPPING 0~3 0 Read-only

14 The latest action reason (higher 4 bits for startup and lower 4 bits for

shutdown): 0=unknown, 1=startup alarm, 2=shutdown alarm

3=button click, 4=VIN drops, 5=VIN recovers, 6=over temperature,

7=below temperature, 8=newly powered, 9=reboot, 10=missed

heartbeat, 11=external shutdown, 12=external reboot

-- 0 Read-only

15 Miscellaneous state: bit0=schedule script in use -- 0 Read-only

16 I2C slave address -- 0x51 Read & Write

 32

17 The delay (in second) between power connection and turning on Pi:

0=immediately turn on, 255=stay off

0~255 255 Read & Write

18 The delay (in second) between Pi shutdown and power cut 0~255 15 Read & Write

19 Pulse interval in seconds, for LED and dummy load 0~255 10 Read & Write

20 How long the white LED should stay on (in ms), 0=no blink 0~255 100 Read & Write

21 How long the dummy load should be applied (in ms), 0=off. 0~255 0 Read & Write

22 Low voltage threshold (x10), 0=disabled 0~255 0 Read & Write

23 Recovery voltage threshold (x10), 0=disabled 0~255 0 Read & Write

24 Power source priority, 0=VUSB first, 1=VIN first 0 or 1 0 Read &Write

25 Adjustment for measured VUSB (x100) -128~127 0 Read & Write

26 Adjustment for measured VIN (x100) -128~127 0 Read & Write

27 Adjustment for measured VOUT (x100) -128~127 0 Read & Write

28 Adjustment for measured IOUT (x1000) -128~127 0 Read & Write

29 Allowed missed heartbeats before power cycle by watchdog, 0=disable 0~255 0 Read & Write

30 Whether to write log into file: 1=allowed, 0=not allowed 0 or 1 1 Read & Write

31 Whether to allow long press BOOTSEL and then click button for

factory reset: 1=allowed, 0=not allowed

0 or 1 1 Read & Write

32 Second register for startup alarm (BCD format) -- 0 Read & Write

33 Minute register for startup alarm (BCD format) -- 0 Read & Write

34 Hour register for startup alarm (BCD format) -- 0 Read & Write

35 Day register for startup alarm (BCD format) -- 0 Read & Write

36 Second register for shutdown alarm (BCD format) -- 0 Read & Write

 33

37 Minute register for shutdown alarm (BCD format) -- 0 Read & Write

38 Hour register for shutdown alarm (BCD format) -- 0 Read & Write

39 Day register for shutdown alarm (BCD format) -- 0 Read & Write

40 Action for below temperature: 0-do nothing; 1-startup; 2-shutdown 0~2 0 Read & Write

41 Below temperature threshold (signed degrees of Celsius) -128~127 0 Read & Write

42 Action for over temperature: 0-do nothing; 1-startup; 2-shutdown 0~2 0 Read & Write

43 Over temperature threshold (signed degrees of Celsius) -128~127 0 Read & Write

44 bit7=mode; bit6~0: DST offset in minute, 0=disable DST -- 0 Read & Write

45 DST begin month in BCD format -- 0 Read & Write

46 mode=0: bit7~4=week in BCD, bit3~0=day in BCD

mode=1: bit7~0=date in BCD

-- 0 Read & Write

47 DST begin hour in BCD format -- 0 Read & Write

48 DST begin minute in BCD format -- 0 Read & Write

49 DST end month in BCD format -- 0 Read & Write

50 mode=0: bit7~4=week in BCD, bit3~0=day in BCD

mode=1: bit7~0=date in BCD

-- 0 Read & Write

51 DST end hour in BCD format -- 0 Read & Write

52 DST end minute in BCD format -- 0 Read & Write

53 Whether DST has been applied -- 0 Read & Write

54 System clock (in MHz) for RP2350 -- 48 Read & Write

55~63 Reserved for future usage -- -- Read & Write

 34

64 Register to specify directory 0~255 0 Admin

65 Register to provide extra context 0~255 0 Admin

66 Register to provide download stream 0~255 0 Admin

67 Register to provide upload stream 0~255 0 Admin

68 Password for administrative command 0~255 0 Admin

69 Administrative command to run 0~255 0 Admin

70 Heartbeat register for watchdog 0~255 0 Admin

71 Shutdown request: 0=none, 1=turn RPi off, 2=RPi is shutting down,

3=RPi is rebooting

0~3 0 Admin

72~79 Reserved for future usage -- -- Admin

80 RX8025T: Second in RTC time -- -- Virtual

81 RX8025T: Minute in RTC time -- -- Virtual

82 RX8025T: Hour in RTC time -- -- Virtual

83 RX8025T: Weekday in RTC time -- -- Virtual

84 RX8025T: Date in RTC time -- -- Virtual

85 RX8025T: Month in RTC time -- -- Virtual

86 RX8025T: Year in RTC time -- -- Virtual

87 RX8025T: RTC RAM register -- -- Virtual

88 RX8025T: RTC minute alarm register -- -- Virtual

89 RX8025T: RTC hour alarm register -- -- Virtual

90 RX8025T: RTC day alarm register -- -- Virtual

 35

91 RX8025T: RTC timer Counter 0 -- -- Virtual

92 RX8025T: RTC timer Counter 1 -- -- Virtual

93 RX8025T: RTC extension register -- -- Virtual

94 RX8025T: RTC flag register -- -- Virtual

95 RX8025T: RTC control register -- -- Virtual

96 TMP112: MSB of temperature -- -- Virtual

97 TMP112: LSB of temperature -- -- Virtual

98 TMP112: MSB of configuration -- -- Virtual

99 TMP112: LSB of configuration -- -- Virtual

100 TMP112: MSB of low-temperature threshold -- -- Virtual

101 TMP112: LSB of low-temperature threshold -- -- Virtual

102 TMP112: MSB of high-temperature threshold -- -- Virtual

103 TMP112: LSB of high-temperature threshold -- -- Virtual

Below is an example to read the register with index 13, to know the current state of Raspberry Pi

(0x02 means Raspberry Pi is ON):

And below is an example to write the register with index 19, to set the pulsing interval to 5 second:

pi@raspberrypi:~ $ i2cget -y 1 0x51 13

pi@raspberrypi:~ $ 0x02

pi@raspberrypi:~ $ i2cset -y 1 0x51 19 5

 36

 37

 What GPIO Pins Are Used by Witty Pi5?

The GPIO pins used by Witty Pi 5 are marked with green color in the table below.

GPIO

(BCM)

Name Physical Name
GPIO

(BCM)

 3.3V 1 2 5V

GPIO 2 SDA 1 3 4 5V

GPIO 3 SCL 1 5 6 GND

GPIO 4 7 8 TXD GPIO 14

 GND 9 10 RXD GPIO 15

GPIO 17 11 12 PCM CLK GPIO 18

GPIO 27 13 14 GND

GPIO 22 15 16 GPIO 23

 3.3V 17 18 GPIO 24

GPIO 10 MOSI 19 20 GND

GPIO 9 MISO 21 22 GPIO 25

GPIO 11 SCLK 23 24 CE0 GPIO 8

 GND 25 26 CE1 GPIO 7

GPIO 0 ID_SD 27 28 ID_SC GPIO 1

GPIO 5 29 30 GND

GPIO 6 31 32 PWM0 GPIO 12

GPIO 13 PWM1 33 34 GND

GPIO 19 PCM FS 35 36 GPIO 16

GPIO 26 37 38 PCM DIN GPIO 20

 GND 39 40 PCM DOUT GPIO 21

As you can see, Witty Pi 5 only uses I2C buses and do not use any other GPIO. This maximize the

chance to be compatible with other hardware.

 38

13. Revision History

Revision Date Description

1.00 2025.05.28 Initial revision

	1. Overview
	1.1 Introduction
	1.2 What’s New in Witty Pi 5?
	1.3 Application Scenarios
	1.4 Board Layout

	2. Specifications
	3. Package Content
	4. Working Principles
	4.1 How Witty Pi 5 Powers Raspberry Pi
	4.2 The Three Key Factors: Time, Voltage, and Temperature
	4.3 The Schedule Scripts (.wpi, .act, and .skd Files)
	4.4 Everything via I2C

	5. Hardware Installation and Software Setup
	5.1 Hardware Installation
	5.2 Software Setup

	6. The Emulated USB Flash Drive
	7. The Emulated USB Serial Device
	8. About Schedule Script
	8.1 .wpi File
	8.2 .act File
	8.3 .skd File
	8.4 Run a Schedule Script
	8.5 Write Your Own Schedule Script
	8.6 Using Schedule Script Generator

	9. Additional Interfaces
	9.1 Serial Wire Debug (SWD) Port for RP2350 (P4)
	9.2 Unpopulated RP2350 Reset Header (P7)
	9.3 Unpopulated 3V RTC Battery Connector (P6)
	9.4 Unpopulated Serial Port Connector (P5)
	9.5 Unpopulated 7-Pin Extension Header (P2)
	9.6 Solder Pads for Internal I²C Bus (I-SDA and I-SCL)

	10. Migrating from Witty Pi 4 to Witty Pi 5
	11. Log Files for Witty Pi 5
	11.1 Software Log (on Raspberry Pi)
	11.2 Firmware Log (on Witty Pi 5)

	12. Frequently Asked Questions (FAQ)
	12.1 What I2C address is used by Witty Pi 5? Can I change it?
	12.2 What I2C Registers are provided by Witty Pi 5?
	12.3 What GPIO Pins Are Used by Witty Pi5?

	13. Revision History

